
w~2B.fJ

MRTD Modeling of Nonlinear Pulse Propagation

Michael Krumpholz, Herbert G. Winful, Linda P.B. Katehi

Radiation Laboratory, Department of Electrical Engineering and Computer Science

University of Michigan,

A ~stract- The nonlinear pulse propagation in optical

fiber filters is modeled by a multiresolution time domain

(MRTD) scheme based on the expansion in scaling func-

tions. As for the case of the linear modeling of microwave

structures, the MRTD scheme exhibits advantages over

Yee’s FDTD scheme, since it allows to reduce the mesh

size by a factor of five per dimension. This is demonstrated

by modeling the pulse compression with both MRTD and

FDTD schemes.

1 Introduction

Recently, new multiresolution time domain (MRTD)

schemes based on othornormal wavelet expansions have

been applied to the analysis of microwave structures. It

has been shown that the MRTD schemes exhibit the ca-

pability of approximating the exact solution for sampling

rates approaching the Nyquist limit [1]. Thus the minimum

discretization for accurate MRTD results is close to two

points per wavelength, while it is usually about ten points

per wavelength for accurate FDTD results. This explains

why the results for FDTD and MRTD presented in [1] ex-

hibit about the same accuracy using a MRTD mesh with

five times less grid points per dimension. The objective of

this paper is to demonstrate that the same advantages of

MRTD over FDTD exist in the case of nonlinear modeling.

While the physics of pulse compression in optical fiber

filters is described in detail in [2], this paper concentrates on

the computational aspects of solving the nonlinear partial

differential equations. In [1], cubic spline Battle–Lemarie

scaling and wavelet functions have been used as expan-

sion functions in space domain. Since the use of scaling

and wavelet functions as a complete set of basis functions

is called multiresolution analysis [3], the resulting time do-

main schemes have been called multiresolution time domain

(MRTD) schemes. Throughout this paper, the electromag-

netic fields are represented by an expansion in terms of

scaling functions only, thus the resulting scheme is denoted
by S-MRTD scheme. In order to obtain a two-step S-

MRTD scheme with respect to time, pulse functions are

used as expansion and test functions in time domain.
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2 The S–MRTD scheme

Since the physics of pulse compression in optical fiber fil-

ters is described in detail in [2], we concentrate on the com-

putational aspects of solving the corresponding nordinear

partial differential equations. Assuming a nonlinear polar-

ization and a spatially periodic refractive index as well as

making use of the slowly varying envelope approx~mation,

the pulse propagation in nonlinear media may be described

by [2]
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The terms on the right–hand side cubic in fields describe

self–phase modulation, while the linear terms on the left–

hand describe the dispersive coupling between the slowly

varying electric field components, the forward fielcl EF and

the backward field EB. The refractive index no represents

the refractive index of the nonlinear medium without spa-

tially periodic variation. The coupling constant K is di-

rectly proportiomd to the amplitude of the cosines varia-

tion of the refractive index, while -y is directly proportional

to the nonlinear refractive index coefficient. The detuning

parameter A/3 is defined as the difference between the prop-

agation constant of a guided mode and the wave number

of the grating [2].

Expanding the forward and backward field in terms of

scaling functions in space domain and in terms of pulse

functions in time domain and proceeding as described in [1],

we obtain the partial difference equations
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(3)

where the operator ~z(~~,m) is given by

(4)

2=-15

The coefficients ll~,m with y = F, B are the coefficients of

the expansions in terms of pulse and scaling functions and

s represents the stability factor given by s = cAt/(no AZ).

The indices m and k are the discrete space and time indices

related to the space and time coordinates via z = mAz and

t= kAt, where Az and At represent the space discretiza-

tion interval in z–direction and the time discretization in-

terval, respectively.

The coefficients a(i) are defined by the integral expres-

sion
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and may be evaluated analytically using the representation

oft he scaling function in terms of cubic spline functions [4].

The Battle–Lemarie scaling functions incorporated in the

MRTD scheme do not have compact but only exponential

decaying support and thus, even for large values of i, the

coefficients a(i) are not zero. However, the coefficients for

larger i are negligible and do not affect the accuracy of the

nonlinear MRTD modeling. For this specific example, we

neglected the coefficients a(i) for z > 15.

The integrals
L
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take into account that the application of non–localized ba-

sis functions like the Battle–Lemarie scaling functions re-

quires a non–localized modeling of material discontinuities.

The representation of material discontinuities in terms of

scaling functions gives rise to a linear matrix equation as

explained in [1] where this technique was used in the mod-

eling of anisotropic dielectric media. More specifically, the
integrals Im,m) and I: ~, take in account that the transi-

tion from the free spac~ to the nonlinear medium is repre-

sented by a step function and by a localized material discon-

tinuity, respectively. The integrals may again be evaluated

numerically using the representation of the scaling function

in terms of cubic spline functions [4]. Note that due to the

symmetry properties of the scaling function the following

is true,

IL IAz_m,LIAz–ml = Im,m, (8)

as well as
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where (l~,m, )* represents the conjugate complex of ~~,m,.

In view of the above equations, only one matrix represent-

ing lm ,mJ and one representing I; ~, have to be calcu-

lated. For the MRTD simulations in this paper, the inte-

grals lm,mJ and l~,m , involving scaling functions located

close to the beginning and the end of the nonlinear material

were approximated by 9 x 9 matrices assuming a discretiza-

tion, where the maxima of the scaling functions at the be-

ginning and the end of the nonlinear material are placed

exactly at z = O and z = L. Right in the nonlinear ma-

terial, for O << m, m’ << L/Az, the off–diagonal elements

can be neglected and we may approximate

I N ~m,mt Azm,m) - (11)

and
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The boundary conditions at the beginning of the nonlinear

material at z = O and at the end of the nonlinear material

at z = L are given by

[EF(O, t)12= Ae-t2/a2 (13)

and

~B(L,t) = O (14)

as well as
~EB = no ~EB

az *=O c at *=O

and
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——
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(16)

Since the MRTD scheme is based on the expansions of

the fields in terms of non–localized basis functions, the

implement ation of the boundary conditions (14) is not as

straightforward as for FDTD. The boundary condition (14)

requires the backward field to be zero, which is the same as

considering a perfect electric conductor (PEC) at z = L for

the backward field only. Since the two partial differential

equations (1) and (2) decouple for linear materials, we may

satisfy eq. (14) by adding a slice of free space at the end

of the nonlinear material for the backward field only and

terminating the slice with a PEC. Then the image princi-

ple [I] is applied to model the PEG at z = JfAz. This

is equivalent to terminating the mesh at z = M Az and

making use of the symmetry relation

E{M+m = –E{M_m (17)

for the expansions coefficients outside the mesh.

The radiating boundary conditions (15) and (16) have

been satisfied by applying the perfectly matched layer

(PML) technique [5]. To implement the PML technique

presented for FDTD, we assume that the conductivity is
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Table 1: The peak values of the intensity of the trans-

mitted pulse.

given in terms of scaling functions instead of pulse func-

tions with respect to space. Then the partial difference

equations for modeling the absorbing material used in [5]

may be directly applied for MRTD. For the spatial distri-

bution of the conductivity in the absorbing layer, we as-

sume that the amplitudes of the scaling functions have a

parabolic distribution. The mesh at the end of the absorb-

ing layer is terminated by a PEC which is again modeled

by the image principle.

Fig. 1 shows the intensity IEF(z, t)12 of the transmitted

pulse modeled by the MRTD scheme using a Gaussian ex-

citation with A = 8, cr = 480/At and with the maximum

of the intensity at 3000 At. For the simulation, eqs. (1)

and (2) have been normalized in terms of the length of the

nonlinear material L and the transient time r. The param-

eters have then be chosen to be ~ = nO L/(l Oc) as well as

K.L = 4, /3L = 12 and yL = 2/3. With this choice of the

parameters, the results obtained by integrating numerically

along the forward and backward characteristics [2] could

be reproduced. As for the discretization, for the results

show; in Fig. 1, a space and time discretization interwd of

Az = 0.005 and At = 0.003125 was chosen, thus the non-

linear material was modeled by a mesh with 200 grid points.

With half of the grid points, the transient pulse starts to be

distorted and is therefore not modeled correctly any more,

see Fig. 2. Table 1 gives the peak values of the intensity

of the transmitted pulse for modeling the nonlinear mate-

rial by a mesh with 100 and 200 grid points. For the PML

technique, an absorbing layer with the thickness of 100 grid

points has been used.

Fig. 3 illustrates the results of the nonlinear modeling

using a similar FDTD scheme. For the FDTD simulations,

the same At as for the MRTD simulations as well as the

same Gaussian excitation has been used. Furthermore, ex-

actly the same parameters r, KL, ~L and ~L as for the

MRTD simulation have been chosen. The shift of the max-

imum oft he transmitted pulse by about 500 At is due to an

additional slice of free space in the MRTD mesh between

the excitation and the beginning of the nonlinear material.

This additional slice of free space separates the excitation

and the nonlinear material and thus allows for the use of

eqs. (3) wit bout any modifications.

As for the discretization, for the results shown in Fig. 3,

only half of the grid points, the transient pulse starts to be

distorted and thus, it is not modeled correctly any more

as illustrated by Fig, 4 and by table 1. For the absorbing

layer in the FDTD mesh, it was found that a thickness of

1000 discretization intervals had to be chosen in order to

obtain results which were not influenced by the reflections

from the absorber.

3 Conclusions

An MRTD scheme for the modeling of nonlinear ,pulse prop-

agation has been derived. As for the case of linear mod-

eling, the results suggest that the MRTD mesh can be re-

duced by a factor of five per dimension in compi~rison with

FDTD while maintaining the accuracy of the field approx-

imation. For the specific example presented in this paper,

the execution time for MRTID was about a factor of 1.5

larger than for FDTD which means that the average exe-

cution time for one MRTD cell was about a factor of 7.5

larger than the average execution time for one I?DTD cell.

For a modeling of three–dimensional nonlinear geometries,

this suggests computer savings of one order of magnitude

with respect to execution time and two orders of magni-

tude with respect to the memory requirements. In order

to exploit the full potential off MRTD, the objective of fu-

ture research work is the development of MRTD schemes

for the modeling of two– and three-dimensional nonlinear

geometries.
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a space discretization interval of Az = 0.001 was necessary

to obtain the same results as for MRTD. Thus the num-
ber of the grid points in the nonlinear material had to be

enlarged from 200 for MRTD to 1000 for FDTD. Using
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Figure 1: Transmitted pulse modeled by MRTD; 200

grid points.
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Figure 3: Transmitted pulse modeled by FDTD; 1000

grid points.
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Figure 2: Transmitted pulse modeled by MRTD; 100

grid points.
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Figure 4: Transmitted pulse modeled by FDTD; 200

grid points.
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