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Abstract- The nonlinear pulse propagation in optical
fiber filters is modeled by a multiresolution time domain
(MRTD) scheme based on the expansion in scaling func-
tions. As for the case of the linear modeling of microwave
structures, the MRTD scheme exhibits advantages over
Yee’s FDTD scheme, since it allows to reduce the mesh
size by a factor of five per dimension. This is demonstrated
by modeling the pulse compression with both MRTD and
FDTD schemes.

1 Introduction

Recently, new multiresolution time domain (MRTD)
schemes based on othornormal wavelet expansions have
been applied to the analysis of microwave structures. It
has been shown that the MRTD schemes exhibit the ca-
pability of approximating the exact solution for sampling
rates approaching the Nyquist limit [1]. Thus the minimum
discretization for accurate MRTD results is close to two
points per wavelength, while it is usually about ten points
per wavelength for accurate FDTD results. This explains
why the results for FDTD and MRTD presented in [1] ex-
hibit about the same accuracy using a MRTD mesh with
five times less grid points per dimension. The objective of
this paper is to demonstrate that the same advantages of
MRTD over FDTD exist in the case of nonlinear modeling,.

While the physics of pulse compression in optical fiber
filters is described in detail in {2], this paper concentrates on
the computational aspects of solving the nonlinear partial
differential equations. In [1], cubic spline Battle-Lemarie
scaling and wavelet functions have been used as expan-
sion functions in space domain. Since the use of scaling
and wavelet functions as a complete set of basis functions
is called multiresolution analysis [3], the resulting time do-
main schemes have been called multiresolution time domain
(MRTD) schemes. Throughout this paper, the electromag-
netic fields are represented by an expansion in terms of
scaling functions only, thus the resulting scheme is denoted
by S-MRTD scheme. In order to obtain a two-step S—
MRTD scheme with respect to time, pulse functions are
used as expansion and test functions in time domain.
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2 The S—-MRTD scheme

Since the physics of pulse compression in optical fiber fil-
ters is described in detail in [2], we concentrate on the com-
putational aspects of solving the corresponding nonlinear
partial differential equations. Assuming a nonlinear polar-
ization and a spatially periodic refractive index as well as
making use of the slowly varying envelope approximation,
the pulse propagation in nonlinear media may be described
by [2]
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The terms on the right-hand side cubic in fields describe
self-phase modulation, while the linear terms on the left—
hand describe the dispersive coupling between the slowly
varying electric field components, the forward field Er and
the backward field Ep. The refractive index no represents
the refractive index of the nonlinear medium without spa-
tially periodic variation. The coupling constant & is di-
rectly proportional to the amplitude of the cosines varia-
tion of the refractive index, while 7 is directly proportional
to the nonlinear refractive index coefficient. The detuning
parameter Af is defined as the difference between the prop-
agation constant of a guided mode and the wave number
of the grating [2].

Expanding the forward and backward field in terms of
scaling functions in space domain and in terms of pulse
functions in time domain and proceeding as described in [1],
we obtain the partial difference equations
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where the operator D,(EY ) is given by
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The coefficients E¥  with y = F, B are the coefficients of
the expansions in terms of pulse and scaling functions and
s represents the stability factor given by s = cAt/(noAl).
The indices m and k are the discrete space and time indices
related to the space and time coordinates via z = mAz and
t = kAt, where Az and At represent the space discretiza-
tion interval in z—direction and the time discretization in-
terval, respectively.

The coefficients a(i) are defined by the integral expres-
sion
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and may be evaluated analytically using the representation
of the scaling function in terms of cubic spline functions [4].
The Battle-Lemarie scaling functions incorporated in the
MRTD scheme do not have compact but only exponential
decaying support and thus, even for large values of i, the
coefficients a(7) are not zero. However, the coefficients for
larger ¢ are negligible and do not affect the accuracy of the
nonlinear MRTD modeling. For this specific example, we
neglected the coeflicients a(i) for i > 15.
The integrals
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take into account that the application of non-localized ba-
sis functions like the Battle-Lemarie scaling functions re-
quires a non-localized modeling of material discontinuities.
The representation of material discontinuities in terms of
scaling functions gives rise to a linear matrix equation as
explained in [1] where this technique was used in the mod-
eling of anisotropic dielectric media. More specifically, the
integrals I, v and I;E’m,
tion from the free space to the nonlinear medium is repre-
sented by a step function and by a localized material discon-
tinuity, respectively. The integrals may again be evaluated
numerically using the representation of the scaling function
in terms of cubic spline functions [4]. Note that due to the
symmetry properties of the scaling function the following
is true,

take in account that the transi-
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as well as
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In view of the above equations, only one matrix represent-
ing I.,m and one representing I;hhm, have to be calcu-
lated. For the MRTD simulations in this paper, the inte-
grals I, m and I :z,m’ involving scaling functions located
close to the beginning and the end of the nonlinear material
were appoximated by 9 X 9 matrices assuming a discretiza-
tion, where the maxima of the scaling functions at the be-
ginning and the end of the nonlinear material are placed
exactly at z = 0 and 2 = L. Right in the nonlinear ma-
terial, for 0 < m,m’ <« L/Az, the off-diagonal elements
can be neglected and we may approximate
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The boundary conditions at the beginning of the nonlinear
material at z = 0 and at the end of the nonlinear material
at z = L are given by
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Since the MRTD scheme is based on the expansions of
the fields in terms of non-localized basis functions, the
implementation of the boundary conditions (14) is not as
straightforward as for FDTD. The boundary condition (14)
requires the backward field to be zero, which is the same as
considering a perfect electric conductor (PEC) at z = L for
the backward field only. Since the two partial differential
equations (1) and (2) decouple for linear materials, we may
satisfy eq. (14) by adding a slice of free space at the end
of the nonlinear material for the backward field only and
terminating the slice with a PEC. Then the image princi-
ple [1] is applied to model the PEC at » = MAz. This
is equivalent to terminating the mesh at z = M Az and
making use of the symmetry relation

for the expansions coefficients outside the mesh.

The radiating boundary conditions (15) and (16) have
been satisfied by applying the perfectly matched layer
(PML) technique [5]. To implement the PML technique
presented for FDTD, we assume that the conductivity is



IL/Az | FDTD | MRID
100 10.407
200 7.969 | 10.623
500 | 10.189
1000 | 10.562

Table 1: The peak values of the intensity of the trans-
mitted pulse.

given in terms of scaling functions instead of pulse func-
tions with respect to space. Then the partial difference
equations for modeling the absorbing material used in [5]
may be directly applied for MRTD. For the spatial distri-
bution of the conductivity in the absorbing layer, we as-
sume that the amplitudes of the scaling functions have a
parabolic distribution. The mesh at the end of the absorb-
ing layer is terminated by a PEC which is again modeled
by the image principle.

Fig. 1 shows the intensity |Er(z,1)|* of the transmitted
pulse modeled by the MRTD scheme using a Gaussian ex-
citation with A = 8, o = 480/At and with the maximum
of the intemsity at 3000A¢. For the simulation, egs. (1)
and (2) have been normalized in terms of the length of the
nonlinear material L and the transient time 7. The param-
eters have then be chosen to be 7 = noL/(10c) as well as
kL =4, BL = 12 and vL = 2/3. With this choice of the
parameters, the results obtained by integrating numerically
along the forward and backward characteristics {2] could
be reproduced. As for the discretization, for the results
shown in Fig. 1, a space and time discretization interval of
Az = 0.005 and At = 0.003125 was chosen, thus the non-
linear material was modeled by a mesh with 200 grid points.
With half of the grid points, the transient pulse starts to be
distorted and is therefore not modeled correctly any more,
see Fig. 2. Table 1 gives the peak values of the intensity
of the transmitted pulse for modeling the nonlinear mate-
rial by a mesh with 100 and 200 grid points. For the PML
technique, an absorbing layer with the thickness of 100 grid
points has been used.

Fig. 3 illustrates the results of the nonlinear modeling
using a similar FDTD scheme. For the FDTD simulations,
the same At as for the MRTD simulations as well as the
same Gaussian excitation has been used. Furthermore, ex-
actly the same parameters 7, kL, L and yL as for the
MRTD simulation have been chosen. The shift of the max-
imum of the transmitted pulse by about 500A¢ is due to an
additional slice of free space in the MRTD mesh between
the excitation and the beginning of the nonlinear material.
This additional slice of free space separates the excitation
and the nonlinear material and thus allows for the use of
egs. (3) without any modifications.

As for the discretization, for the results shown in Fig. 3,
a space discretization interval of Az = 0.001 was necessary
to obtain the same results as for MRTD. Thus the num-

ber of the grid points in the nonlinear material had to be

enlarged from 200 for MRTD to 1000 for FDTD. Using
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only half of the grid points, the transient pulse starts to be
distorted and thus, it is not modeled correctly any more
as illustrated by Fig. 4 and by table 1. For the absorbing
layer in the FDTD mesh, it was found that a thickness of
1000 discretization intervals had to be chosen in order to
obtain results which were not influenced by the reflections
from the absorber.

3

An MRTD scheme for the modeling of nonlinear pulse prop-
agation has been derived. As for the case of linear mod-
eling, the results suggest that the MRTD mesh can be re-
duced by a factor of five per dimension in comparison with
FDTD while maintaining the accuracy of the field approx-
imation. For the specific example presented in this paper,
the execution time for MRTD was about a factor of 1.5
larger than for FDTD which means that the average exe-
cution time for one MRTD cell was about a factor of 7.5
larger than the average execution time for one FDTD cell.
For a modeling of three—dimensional nonlinear geometries,
this suggests computer savings of one order of magnitude
with respect to execution time and two orders of magni-
tude with respect to the memory requirements. In order
to exploit the full potential of MRTD, the objective of fu-
ture research work is the development of MRTD schemes
for the modeling of two— and three-dimensional nonlinear
geometries.
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Figure 1: Transmitted pulse modeled by MRTD; 200
grid points.
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Figure 3: Transmitted pulse modeled by FDTD; 1000
grid points.
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Figure 2: Transmitted pulse modeled by MRTD; 100

grid points.
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Figure 4: Transmitted pulse modeled by FDTD; 200

grid points.



